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Thermoelectric transport across a tunnel contact between two charge Kondo circuits:
Beyond perturbation theory
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Following a theoretical proposal on multi-impurity charge Kondo circuits [T. K. T. Nguyen and M. N.
Kiselev, Phys. Rev. B 97, 085403 (2018)] and the experimental breakthrough in fabrication of the two-site
Kondo simulator [W. Pouse et al., Nat. Phys. 19, 492 (2023)] we investigate a thermoelectric transport through
a double-dot charge Kondo quantum nanodevice in the strong coupling operational regime. We focus on the
fingerprints of the non-Fermi liquid and its manifestation in the charge and heat quantum transport. We construct
a full-fledged quantitative theory describing crossovers between different regimes of the multichannel charge
Kondo quantum circuits and discuss possible experimental realizations of the theory.
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I. INTRODUCTION

Thermoelectric materials have been investigated in recent
years thanks to their ability to generate electricity from waste
heat or being used as solid-state Peltier coolers [1]. The mech-
anism of converting of heat into voltage known as the Seebeck
effect [2] is associated with the emergence of the electrostatic
potential across the hot and cold ends of the thermocouple
[3,4] while no electric current flows through the system. The
Peltier effect is manifested by the creation of the temperature
difference between the junctions when the electric current
flows through the thermocouple.

After theoretical predictions have been suggested that the
thermoelectric efficiency could be greatly enhanced through
nanostructural engineering in the mid-1990s [5,6], many com-
plex nanostructured materials were studied in both theory
and experiment [7–11]. Nano-electric circuits based on one
or a few quantum dots (QDs), which are highly controllable
and fine tunable, can provide important information about the
effects of strong electron-electron interactions, interference
effects, and resonance scattering on the quantum charge, spin,
and heat transport.

One of the fundamental motivations of the thermoelectric
studies is to enhance thermoelectric power (absolute value of
the Seebeck coefficient, TP). It is a challenge for both exper-
imental fabrication of devices and theoretical suggestions for
efficient mechanisms of heat transfer. In fact, many theoretical
investigations showed that the TP of a single electron tran-
sistor (SET) was greatly enhanced in comparison with those
of bulk materials [12–18] and this has also been realized in
experiments [19,20]. Furthermore, the charge Kondo effect
[21–26] dealing with the degeneracy of the charge states of the
QD (which is similar to the conventional Kondo effect [27–31]
but does not require the system to have magnetic degree of
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freedom) can be a tool for intensification of the TP of a SET
[24,32]. The building block of a charge Kondo circuit (CKC)
is a large metallic QD strongly coupled to one (or several)
lead(s) through an (or several) almost transparent single-mode
quantum point contact(s) [QPC(s)]. In the orthodoxal charge
Kondo theory [21–23], the electron location (namely, in or
out of QD) is treated as an isospin variable, while two spin
projections of electrons are associated with two (degenerate,
in the absence of external magnetic field) conduction channels
in the conventional Kondo problem. External magnetic field
lifts out the channel degeneracy resulting in a crossover from
two-channel Kondo (2CK) regime at the vanishing magnetic
field to the single-channel Kondo (1CK) regime at the strong
external field [26,33]. As a result, the behavior of the system
continuously changes from non-Fermi-liquid (NFL) to the
Fermi-liquid (FL) states, respectively. The interplay between
NFL-2CK and FL-1CK regimes in thermoelectric transport
through the SET has also been investigated in different sit-
uations such as: materials with strong spin-orbit interaction
[34]; quantum simulators with strong many-body interactions
between mobile carriers [36,37]. The proposal of the quantum
simulators consisting of two weakly coupled SETs has been
suggested in Refs. [35,38]. Recently, the challenging problem
of a generalized Wiedemann-Franz (WF) law in the quantum
simulators and its connection to the Anderson orthogonality
catastrophe has been addressed in Ref. [39]. Beside, the ef-
fects of the electron-electron interactions in the charge Kondo
simulators have also been considered [40–42]. In those works,
the bosonization (and refermionization) method is applied.
The charge transport in 1CK and 2CK regimes were stud-
ied extensively numerically in Refs. [43–46]. Developing
numerical methods for a quantum impurity problem out of
equilibrium is still a big challenge. There is a recent progress
on the charge Kondo effects by using quantum Monte Carlo
(QMC) technique [47–49]. Although the numerical renormal-
ization group [43–46] is more developed and advanced in
comparison to the QMC now days, some recent works on

2469-9950/2024/109(11)/115139(14) 115139-1 ©2024 American Physical Society

https://orcid.org/0000-0003-1700-1053
https://orcid.org/0000-0003-1220-1283
https://orcid.org/0000-0003-2542-3686
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.115139&domain=pdf&date_stamp=2024-03-18
https://doi.org/10.1103/PhysRevB.97.085403
https://doi.org/10.1038/s41567-022-01905-4
https://doi.org/10.1103/PhysRevB.109.115139


NGUYEN, NGUYEN, AND KISELEV PHYSICAL REVIEW B 109, 115139 (2024)

QMC on the Keldysh contour [50,51] pave a way for devel-
oping new approaches and provide complementary tools for
better understanding of both new theoretical models and new
experiments with quantum simulators.

Recently, CKCs operated in the integer quantum Hall
(IQH) regime have been implemented in breakthrough exper-
iments [52,53]. With the advantage that the number of Kondo
channels is determined by the number of QPCs attached to
the metallic QD, these experiments have opened an access to
investigation of the multichannel Kondo (MCK) problem ex-
perimentally. The dominant characteristic of a specific MCK
setup is a NFL picture [54–56], which is associated with
ZM symmetry. For instance, the NFL-2CK [57–59] is ex-
plained by Majorana fermions [60,61], the NFL-3CK physics
is related to Z3 parafermions [62–67]. Therefore, switching
between Z2k+1 and Z2k low-temperature fixed points by con-
trolling the reflection amplitudes of the QPCs, can provide a
route to investigate the crossovers between states with differ-
ent parafermion fractionalized zero modes [68].

As a CKC is considered as an artificial quantum simu-
lator for the technology of quantum computer, scaling up
the CKCs to clusters or lattices is challenging and it is im-
portant to understand the nature of the coupling between
neighboring QDs. For this motivation, the experiment [69]
has implemented a two-island charge Kondo device in which
two QDs are coupled together and each one is also strongly
coupled to an electrode through a QPC. The authors investi-
gated the quantum phase transition at the triple point where
the charge configurations are degenerate. Being more than
the two-impurity Kondo (2IK) model, the two-site charge
Kondo circuit (2SCKC) is relevant to the Kondo lattice sys-
tems. Furthermore, the deeper theoretical investigation of the
strong central coupling of this setup [70,71] in the Toulouse
limit showed that a Z3 parafermion emerging at the criti-
cal point, was already present in the experimental device of
Ref. [69].

In this work, we revisit the model proposed in Ref. [35],
which contains a tunnel contact between two CKCs where
each one is set up in either FL or NFL state (see Fig. 1)
with a twofold goal. First, we examine the behavior of TP
in order to find a mechanism to enhance it. Second, we
show the existence of Majorana fermions in this 2SCKC. The
approach used in Ref. [35] is based on accounting for the
perturbative corrections to the transport off-diagonal coeffi-
cients and is limited by the perturbation theory domain of
validity (high-temperature regime). These calculations, being
very useful for understanding the flow towards the non-Fermi
liquid intermediate coupling fixed point, neither become valid
at the low-temperature regime, nor shed a light on reduc-
tion of the symmetry due to the emergence of the Majorana
(parafermionic) states. The main idea of this work is to
develop a controllable and reliable approach for the quanti-
tative description of the Fermi-to-non-Fermi liquid crossovers
and interplay around the intermediate coupling fixed points.
It therefore provides a complementary study of the model
[35] and completes the theory of thermoelectrics in 2SCKCs.
The new energy scale associated with the inverse lifetime
of the emergent Majorana fermions controls four different
regimes of thermoelectric transport based on the window of
parameters.

V

V
V

V

FIG. 1. Schematic of a weak link between two charge Kondo
circuits (CKC). Each circuit consists of a large metallic island (QD),
which is embedded into two-dimensional electron gas (2DEG) and
connects to two large electrodes through the single-mode quantum
point contacts (QPCs). The 2DEG (plain area) is in the integer
quantum Hall regime ν = 1. The red line with arrows denotes the
chiral edge mode, which backscatters at the center of the narrow
constriction. The QPCs are fine tuned by field effects in split gates
(blue boxes) to different regimes. We name the QPCs in the left CKC
as QPC11, QPC12 and the QPCs in the right CKC as QPC21, QPC22.
The right CKC (gray color) is at the reference temperature T while
the left circuit (orange color) is at higher temperature T + �T .

The paper is organized as follows. We briefly describe the
proposed experimental setup and general equations for the
thermoelectric coefficients in Sec. II. The Sec. III represents
the correlation function in different cases. The main results are
represented in Sec. IV. We discuss the results and conclude
our work in Sec. V.

II. PROPOSED EXPERIMENTAL SETUP AND GENERAL
EQUATIONS FOR THE THERMOELECTRIC

COEFFICIENTS

A. Proposed experimental setup

We consider a 2SCKC device (see Fig. 1) formed by two
CKCs describing a very recent experiment [69]. The building
block for each CKC is a QD-QPC structure implemented
in experiment [52]. The QD is a large metallic island (the
dark-red and blue cross-hatched areas surrounded by the black
lines) electronically connected to a two-dimensional electron
gas (2DEG, the orange and gray continuous areas). The 2DEG
is connected to two large electrodes through two QPCs. Ap-
plying a strong magnetic field perpendicular to the 2DEG
plane can control the 2DEG in the IQH regime at the filling
factor ν = 1. The QPCs are fine tuned (by field effects in the
split gates illustrated by the blue boxes) to the high trans-
parency regime corresponding to weak backscattering of the
chiral edge mode (red solid lines with arrows). We investigate
the regime of equal reflection amplitudes at two QPCs in each
CKC: |r11| = |r12| = |r1| and |r21| = |r22| = |r2|. Therefore,
each CKC is a 2CK setup. Indeed, the CKC can be tuned into
a 1CK model by simply deactivating one of the two QPCs in it.
These two CKCs are connected together by a weak tunneling
(barrier, weak link) between two QDs. In order to study the
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thermoelectric transport through the 2SCKC system, the left
CKC is set up at higher temperature T + �T in comparison
with the right circuit, which is at temperature T . The temper-
ature drops at the central weak link.

B. General formulas for the thermoelectric coefficients

In order to study the thermoelectric effects at the weak link
between two QDs in the linear response regime [�T, e�V ] �
T (we adopt the units h̄ = c = kB = 1), we consider both the
charge current Ie and the heat current Ih across the tunnel
contact [72]: (

Ie

Ih

)
=

(
G GT

T GT GH

)(
�V
�T

)
, (1)

where G, GT , GH are the electric conductance, thermoelec-
tric coefficient, and thermal coefficient, correspondingly. The
computations for the above currents involve the local density
of states (DoS) ν j (ε) of QD j at the weak link through the
transport integrals:

Ln(T ) = 1

4T

∫ ∞

−∞

εn

cosh2
(

ε
2T

)T (T, ε)dε, n = 0, 1, 2, (2)

where

T (T, ε) = 2πe2|t |2ν1(T, ε)ν2(T, ε) (3)

is the transmission coefficient, and |t | is the tunneling ampli-
tude of the central link. The thermoelectric coefficients are
related to the transport integrals as G = L0, GT = −L1/T ,
and GH = L2/T . In the spirits of Matveev-Andreev theory
[24], the DoS ν j (T, ε) is related to the correlation function
Kj (1/2T + it ) as

ν j (T, ε) = ν0, jT cosh

(
ε

2T

) ∫ ∞

−∞

eiεt Kj
(

1
2T + it

)
cosh(πT t )

dt, (4)

where ν0, j stands for the DoS of the QD j which is no longer
renormalized by the electron-electron interactions, while the
correlation function Kj (1/2T + it ) characterizes for these in-
teractions. The details of the derivative procedure for electric
conductance and thermoelectric coefficient have been repre-
sented in Refs. [35,38]. At the end, one can write the formulas
of the electric conductance, thermoelectric coefficient, and
thermal conductance as [72]:

G = ∂Ie

∂�V

∣∣∣∣
�T =0

=π

2
GCT

∫ ∞

−∞

dt

cosh2(πT t )

× K1

(
1

2T
+ it

)
K2

(
1

2T
− it

)
, (5)

GT = ∂Ie

∂�T

∣∣∣∣
�V =0

= − iπGC

4e

∫ ∞

−∞

dt

cosh2(πT t )

×
{[

∂t K1

(
1

2T
+ it

)]
K2

(
1

2T
− it

)
− K1

(
1

2T
+ it

)[
∂t K2

(
1

2T
− it

)]}
, (6)

and

K = ∂Ih

∂�T

∣∣∣∣
Ie=0

= GH − T
G2

T

G
, (7)

with GH is thermal coefficient, which is expressed as

GH = ∂Ih

∂�T

∣∣∣∣
�V =0

= πGC

2e2

∫ ∞

−∞
dt

×
{

π2T 2[2 − cosh2(πT t )]

cosh4(πT t )
K1

(
1

2T
+ it

)
× K2

(
1

2T
− it

)
+ 1

cosh2(πT t )
∂t K1

(
1

2T
+ it

)
∂t K2

(
1

2T
− it

)}
,

(8)

where GC = 2πe2ν0,1ν0,2|t |2 is a conductance of the central
(tunnel) area assuming that the electrons in the QDs are non-
interacting. The TP in the linear regime is defined at Ie = 0 as

S = − �V

�T

∣∣∣∣
Ie=0

= GT

G
. (9)

The definition of the figure of merit ZT , which characterizes
the quality of a thermoelectric material, reads

ZT = GT S2

K . (10)

One should notice that the equation for the thermal conduc-
tance K (7) contains both the diagonal and the off-diagonal
Onsager coefficients [72]. The thermal conductance is con-
nected to the electric conductance G (typically, in the
low-temperature regime) by a universal constant called the
Lorenz number [73,74]:

K
GT

= L0 = π2

3e2
. (11)

Connection between electric and thermal conductances (11)
is established by the WF law. The validity of WF law is
attributed to the fact that both charge and heat are transferred
by the same quasiparticles. In some strongly correlated sys-
tems, however, the K/(GT ) is deviated from L0 still remaining
the universal number [39,75]. Thus, the generalized WF law
is applied for description of such systems. The computa-
tion of thermoelectric coefficients in Eqs. (5), (6), and (8)
[76] requires the explicit form of the correlation functions
K1,2(1/2T ± it ).

III. CORRELATION FUNCTION Kj (τ )

In the Matveev-Andreev spirits, the time-ordered correla-
tion function Kj (τ ) = 〈Tτ F (τ )F †(0)〉 (Tτ is the time-ordering
operator, the imaginary time t runs from 0 to β = 1/T ) ac-
counts for interaction effects in QDs. The operator F †(0)
increases number of electrons entering the QD j through the
weak link (characterized by operator n̂) from 0 to 1 at time
t = 0 and F (τ ) decreases it back to 0 at time t = τ , one
can replace n̂ by n jτ (t ) = θ (t )θ (τ − t ) with θ (t ) is the unit
step function. Therefore, the correlation function Kj (τ ) is
computed through the functional integration over the bosonic
fields Kj (τ ) = Zj (τ )/Zj (0) [24].
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A. 1CK case: Perturbative solution

In the case one CKC is settled down in the FL-1CK state
by decoupling one of the two QPCs, the functional integral
writes

Zj (τ ) =
∫

Dφ j exp[−S0, j − SC, j (τ ) − Ss, j], (12)

where S0, j , SC, j , and Ss, j are Euclidean actions describing the
free (noninteracting) one-dimensional Fermi gas, Coulomb
blockade in the QD and the backscattering at the QPC of the
CKC j, respectively. They are written as [24,77,78]

S0, j = vF

2π

∫ β

0
dt

∫
dx

[
(∂tφ j )2

v2
F

+ (∂xφ j )
2

]
, (13)

SC, j = EC, j

∫ β

0
dt

[
n jτ (t ) + 1

π
φ j (0, t ) − Nj

]2

, (14)

Ss, j = −2D

π
|r j |

∫ β

0
dt cos[2φ j (0, t )]. (15)

with φ j representing the bosonic field at the QPC of the CKC
j, and vF is the Fermi velocity, EC, j is the charging energy
of the QD j, Nj is the normalized dimensionless gate voltage,
controlled by plunger gates (not shown in Fig. 1), and D is a
bandwidth. One should notice that the bosonic field describing
the electrons moving through the constriction is blocked by
the Coulomb interaction in the QD. Therefore, Zj (τ ) can be
computed perturbatively over |r j | for the small backscattering
at the QPC (|r j | � 1), and the correlation function Kj (τ ) then
is

Kj (τ ) =
(

π2T

γ EC, j

)2 1

sin2 (πT τ )
[1 − 2γ ξ |r j | cos(2πNj )

+ 4π2ξγ |r j | T

EC, j
sin(2πNj ) cot(πT τ )], (16)

with γ = eC , C ≈ 0.577 is Euler’s constant, ξ = 1.59 is a
numerical constant [24].

B. Symmetric 2CK case: Nonperturbative solution

For convenient calculation later, one can define the vari-
ables φ j,ρ/σ = φ j,1 ± φ j,2 so-called charge/spin fields where
φ j,α (α = 1, 2) represents the bosonic field at the QPC α of
the CKC j. The functional integral in this case is written as:

Zj (τ ) =
∏

λ=ρ,σ

∫
Dφ j,λ exp[−S0, j − SC, j (τ ) − Ss, j], (17)

where S0, j , SC, j , and Ss, j are Euclidean actions describing
the free Fermi liquid, Coulomb blockade in the QD and the
backscattering at the QPCs of the CKC j, respectively. The
action S0, j is presented as a sum of two independent actions

S0, j =
∑

λ=ρ,σ

vF

2π

∫ β

0
dt

∫
dx

[
(∂tφ j,λ)2

v2
F

+ (∂xφ j,λ)2

]
. (18)

The Coulomb blockade action SC, j in bosonic representation
reads [77]

SC, j = EC, j

∫ β

0
dt

[
n jτ (t ) +

√
2

π
φ j,ρ (0, t ) − Nj

]2

. (19)

The contribution Ss, j in the action of each CKC characterizes
the weak backscattering at the QPCs is

Ss, j = −2D

π
|r j |

∫ β

0
dt cos[

√
2φ j,ρ (0, t )]

× cos[
√

2φ j,σ (0, t )]. (20)

In the absence of backscattering |r j | = 0, the functional
integral Eq. (17) is Gaussian. The correlator K (0)

j (τ ) ≡
Kj (τ )|r=0 = Kj,ρ (τ ) is computed at low temperature T � EC

and at τ 	 E−1
C :

Kj,ρ (τ ) = π2T

2γ EC, j

1

| sin(πT τ )| . (21)

The perturbative results (see Ref. [24]) showed that the
thermoelectric properties of the system are controlled by
charge and spin fluctuations at low frequencies (below EC, j).
One should notice that the effect of small but finite |r j | on the
charge modes is negligible in comparison with the Coulomb
blockade but it changes the low-frequency dynamics of the
unblocked spin modes dramatically. The correlation function
can be split into charge and spin components as Kj (τ ) =
Kj,ρ (τ )Kj,σ (τ ), with Kj,σ (τ ) = Zj,σ (τ )/Zj,σ (0). We simply
replace the cos[

√
2φ j,ρ (0, t )] in action Eq. (20) by the

〈cos[
√

2φ j,ρ (0, t )]〉τ =√
2γ EC, j/πD cos[πNj − χ jτ (t )], with

χ j (t ) = πn jτ (t ) + δχ jτ (t ), δχ jτ (t ) ≈ (π2T/2EC, j )[cot(π
T (t − τ ) − cot(πT t )] and obtain the effective action for the
spin degrees of freedom in the form

Sτ j =
∫

dx
∫ β

0
dt

vF

2π

[
(∂tφ j,σ )2

v2
F

+ (∂xφ j,σ )2

]

−
∫ β

0
dt

√
4D

vF
λ̃ jτ (t ) cos[

√
2φ j,σ (0, t )], (22)

where

λ̃ jτ (t ) = � j (−1)nτ (t ) cos[πNj − δχ jτ (t )],

� j = |r j |
√

2γ vF EC, j

πD
. (23)

After performing the refermionization, our model [as
shown in Eq. (22)] is mapped onto an effective Anderson
model, which is described by Hamiltonian

H eff
j,τ (t ) =

∫
[vF kc†

j,kc j,k − λ̃ jτ (t )(c + c†)(c j,k − c†
j,k )]dk,

(24)

in which the operators c†
j,k and c j,k satisfying the anticom-

mutation relations {c j,k, c†
j,k′ } = δ(k − k′) create and destroy

chiral fermions; c is a local fermionic annihilation operator
anticommuting with c†

j,k and c j,k . We see that the model is
free and equivalent to a resonant level model where the leads
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are coupled to Majorana fermion η = (c + c†)/
√

2 on the
impurity. The time-dependent Hamiltonian (24) can be split
into H eff

j,0 + H ′
j,τ (t ) by replacing λ̃ jτ (t ) → λ̃ jτ (t )/(−1)nτ (t ).

The time-independent Hamiltonian part H eff
j,0 is H eff

j,τ=0 while
the correction is

H ′
j,τ (t ) = 2� j{cos[πNj] − cos[πNj − δχ jτ (t )]}ηζ , (25)

with ζ = ∫ ∞
−∞(c j,k − c†

j,k )dk/
√

2 describes the Majorana
fermion of the leads in the resonant level model. Our so-
lution, being nonperturbative in |r j | and accounting for
low-frequency dynamics of the spin modes, leads to the ap-
pearance of the Kondo-resonance width � j in the vicinity of
Coulomb peaks

� j (Nj ) = 8γ EC, j

π2
|r j |2 cos2(πNj ). (26)

We then compute the correlation function straightforwardly
and obtain the zero order in |r j | term corresponding to the
Hamiltonian part H eff

j,0 as

K (0)
j

(
1

2T
+ it

)
= πT � j

γ EC, j

1

cosh(πT t )

×
∫ ∞

−∞

eω(1/2T +it )(
ω2 + �2

j

)
(1 + eω/T )

dω, (27)

and the first-order term when the correction Hamiltonian part
H ′

j,τ (t ) is taken into account, is

K (1)
j

(
1

2T
+ it

)
= − 4T

EC, j

|r j |2 sin(2πNj )

cosh(πT t )

× ln

(
EC, j

T + � j

)∫ ∞

−∞
dω

× ωeω(1/2T +it )(
ω2 + �2

j

)
(1 + eω/T )

. (28)

One should notice that if the correlation function Kj (τ ) is
considered at the zeroth-|r j | order K (0)

j in the Eq. (27), the
DoS of a charge Kondo circuit j is an even function of the
energy ε/� j , while the contribution to DoS due to the first
order in |r j | term K (1)

j in the Eq. (28) is an odd function of
energy. The DoS of a CKC is shown in Fig. 2. In the regime
of small compared to the temperature energies (in comparison
to the Kondo temperature, which is EC, j in the charge Kondo
model) the DoS are analytic functions obeying a Taylor expan-
sion ν j/ν0, j ∝ a j (|r j |, T ) + b j (|r j |, T )(ε/EC, j ) + c j (|r j |, T )
(ε/EC, j )2 + d j (|r j |, T )(ε/EC, j )3 + ... (here a j, b j, c j, d j are
constant depending on the system parameters) [see the insert
of Fig. 2)] while ν j/ν0, j ∝ |ε/EC, j | in the other regime of
energy. The latter is explained based on the orthogonality
catastrophe [23,39]. The symmetry and asymmetry of the
contributions originated from K (0)

j and K (1)
j to the DoS implies

that it is enough to take into account K (0)
j in order to compute

G and GH but it is necessary to consider K (1)
j when one

calculates GT [see Eqs. (2), (3)]. The formulas (27) and (28)
will be used to calculate the thermoelectric coefficients in the
next section.

Τ

Τ

= 1

Τ

= 0.01

Τ
0

Τ

= 5

Τ

= 2

FIG. 2. The density of states (DoS) of a charge Kondo circuit
ν/ν0 is plotted. Both the even function of time correlation functions
K (0)

j given by the Eq. (27) and the odd function of time K (1)
j given by

Eq. (28) being proportional to the second power of the particle-hole
symmetry breaking parameter |r| are taken into account. The DoS
is plotted as a function of ratio of energy to the Kondo resonance
width ε/� and ratio of temperature to the Kondo resonance width
T/� (we choose N1 = N2 = N = 0.42, |r1|2 = |r2|2 = |r|2 = 0.12,
EC,1 = EC,2 = EC , and therefore �1 = �2 = �). Insert: zoomed in
DoS as the function of ratio of energy to the Kondo resonance width
ε/� at different temperatures T/� = 0.01, 1, 2, 5 corresponding to
the black dotted, red dashed, blue dot-dashed, and orange lines.

IV. MAIN RESULTS

Going beyond the perturbation theory assuming smallness
of the reflection amplitudes of the QPCs as represented in
Ref. [35], we develop a controllable and reliable approach for
the quantitative description of the Fermi-to-non-Fermi liquid
crossovers and interplay around the intermediate coupling
fixed points in this work.

A. Weak coupling between single-
and two-channel charge Kondo circuits

To begin with description of the weakly coupled single-
and two-channel Kondo simulators we consider the circuit
consisting of the left CKC being in the FL-1CK state and
the right CKC operating in the NFL-2CK state. We apply the
correlation functions K1( 1

2T + it ) and K2( 1
2T − it ) as shown

in Eqs. (16) and (27)–(28), respectively. The electric conduc-
tance is given by

G = π2GCT 3

96γ 3E2
C,1EC,2

FG

(
�2

T

)
, (29)

with FG is a dimensionless function describing the interplay
between the width of the Kondo resonance of the right CKC
�2 and the temperature T . It is expressed as

FG

(
p2 = �2

T

)
=

∫ ∞

−∞
du J (p2, u), (30)

J (p2, u) = p2[u2 + π2][u2 + 9π2]

cosh2
(

u
2

)[
u2 + p2

2

] . (31)
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The thermoelectric coefficient GT is given by

GT = −π5ξGC

72eγ 2
|r1| sin (2πN1)

T 4

E3
C,1EC,2

FG

(
�2

T

)

− π3ξGC

180eγ 2
|r1| sin (2πN1)

T 4

E3
C,1EC,2

FT

(
�2

T

)
− πGC

40eγ 2
|r2|2 sin (2πN2)

× T 4

E2
C,1EC,2�2

ln

(
EC,2

T + �2

)
FT

(
�2

T

)
, (32)

with

FT (p2) =
∫ ∞

−∞
du u2J (p2, u). (33)

Following the discussion in Ref. [35], based on the perturba-
tive solution, the Seebeck effect on a weak link between 1CK
and 2CK is characterized by the interplay between the Fermi-
and non-Fermi-liquid regimes (see Eq. (24) in the Ref. [35]).
However, this competition is appreciable only at sufficiently
high temperatures T 	 �2. At the very low temperatures,
T � �2, the Fermi-liquid regime characterized by the linear
dependence of the TP as the function the temperature holds.

1. T � �2 limit: Fermi liquid on the left
and non-Fermi-liquid on the right CKC

At temperature regime T 	 �2, we get FG(p2 = �2/T →
0) = 9π5 and FT (p2 → 0) = 256π4 p2/5. Naturally, the ex-
pression in Eq. (32) reproduces the perturbative result (see
Eq. (23) of Ref. [35]). The equation for TP is thus similar to
the formula (24) in Ref. [35]:

S = −4π3ξγ

3e
|r1| T

EC,1
sin (2πN1)

− 256γ

75π2e
|r2|2 ln

(
EC,2

T

)
sin (2πN2). (34)

The crossover temperature T̃ separating two contributions (T -
linear FL and log T NFL) in the TP is defined as follows:

ln

(
EC,2

T̃

)
EC,1

T̃
= 25π5ξ

256

|r1|
|r2|2 . (35)

If �2 � T � T̃ , NFL-2CK behavior of the TP is predicted to
be dominant. In the opposite limit, T 	 T̃ 	 �2, the FL-1CK
regime with the weak NFL-2CK corrections is expected.

2. T � �2 limit: Fermi-liquid regime

At temperature regime T � �2, we get FG(p2 = �2/T 	
1) = 256π4/5p2 and FT (p2 	 1) = 256π6/7p2. The expres-
sion in Eq. (32) produces the linear in temperature term. The
FL picture is thus described through the property of TP as

S = −12π3ξγ

7e

[ |r1|
EC,1

sin (2πN1)

+ tan (πN2)

4γ ξEC,2
|r2|2 ln

(
EC,2

�2

)]
T . (36)

In summary, in the regime of the weak coupling between
single- and two-channel charge Kondo circuits, there exist two
energy scales: the Kondo width �2 ∼ (8γ /π2)EC,2|r2|2 and
the crossover temperature T̃ . When the condition 0 < �2 <

T̃ < EC,2 holds, the domain of validity for the Fermi-liquid
regime is significantly larger compared to the non-Fermi-
liquid domain. The results discussed in this section are
completely consistent with the perturbative results represented
in Ref. [35]. The mixed FL + NFL operational regime of
the thermopower given by Eq. (34) can only be achieved
at the intermediate temperatures restricted by the condition
(8γ /π2)EC,1|r1|2 � T � (EC,1, EC,2).

B. Weak coupling between two-site
two-channel charge Kondo circuits

To compute electric conductance through weakly linked
two-site two-channel charge Kondo circuit it is sufficient
to take into account only even in time part of the kernels
K (0)

j ( 1
2T + it ). As a result, we get

G = GCT 2

24γ 2EC,1EC,2
FC

(
�1

T
,
�2

T

)
, (37)

where

FC (p1, p2) =
∫ ∞

−∞
dz

∫ ∞

−∞
du F (p1, p2, z, u), (38)

F (p1, p2, z, u) = p1 p2u[u2 + 4π2]

sinh
(

u
2

)[
cosh (z) + cosh

(
u
2

)]
× 1[(

z + u
2

)2 + p2
1

][(
z − u

2

)2 + p2
2

] .

(39)

The integral in Eq. (6) vanishes due to the particle-hole
(PH) symmetry when even in time contribution of both ker-
nels K (0)

1,2 ( 1
2T ± it ) is taken into account. As a result the

off-diagonal coefficient G(0)
T = 0. We therefore need to con-

sider the first nonvanishing correction with respect to the
PH-symmetry breaking parameter. By taking into account
even-odd products of the kernels K (0)

1 ( 1
2T + it )K (1)

2 ( 1
2T − it )

and K (1)
1 ( 1

2T + it )K (0)
2 ( 1

2T − it ), we obtain the lowest-order
(we consider the model in the vicinity of the intermediate
coupling fixed point) nonzero contribution to thermoelectric
coefficient as follows:

GT = − GCT 3

6eγπEC,1EC,2

×
{ |r1|2

�1
ln

(
EC,1

T + �1

)
sin (2πN1)FT,s

(
�1

T
,
�2

T

)
+ |r2|2

�2
ln

(
EC,2

T + �2

)
sin (2πN2)FT,m

(
�1

T
,
�2

T

)}
,

(40)
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where

FT,s(p1, p2) =
∫ ∞

−∞
dz

∫ ∞

−∞
du

(
z + u

2

)
zF (p1, p2, z, u),

(41)

FT,m(p1, p2) =
∫ ∞

−∞
dz

∫ ∞

−∞
du

(
z − u

2

)
zF (p1, p2, z, u).

(42)

The Eqs. (37)–(40) represent the central results of this part.
By varying parameters such as temperature, gate voltages,
and/or reflection amplitudes at the QPCs, one can achieve
four different regimes of the thermoelectric transport. The
details of the calculations for the electric conductance and
the thermal coefficient are represented in the Appendix. We
derive and analyze the asymptotic equations for the TP in each
regime in four segments below.

1. (�1, �2 ) � T, non-Fermi-liquid regime

The TP demonstrates the weak NFL behavior at high tem-
perature: T 	 (�1, �2) as

S = −9γ

8e

[
|r1|2 ln

(
EC,1

T

)
sin (2πN1)

+ |r2|2 ln

(
EC,2

T

)
sin (2πN2)

]
. (43)

The similarity between Eqs. (43) and (28) of Ref. [35] implies
that the regime T 	 (�1, �2) mimics the perturbative re-
sult. The Kondo-resonance width � j vanishes at the Coulomb
peaks and increased when the gate voltage Nj goes out of the
half-integer values. This regime is accessible at the center of
the (N1, N2) window (if one considers 0 � N1, N2 � 1). Due
to the logarithmic dependence on temperature but small value
of TP [see Eq. (43)]we refer to it as a weak NFL scenario.

2. �1 � T � �2, non-Fermi-liquid on the left
and Fermi liquid on the right CKC

Let us recall that the Kondo resonances’ widths �1, �2

depend on the gate voltages and therefore represent the energy
scales competing with temperature effects in the vicinity of
the Coulomb peaks. At the parametric regime �1 � T � �2

it corresponds to the domain of the gate voltages such that the
QD 1 is fine tuned to a Coulomb peak closer than the QD 2
(N1 is closer to a half-integer value). The TP consists of two
components: weak FL and NFL characteristics as

S = −1024γ

75eπ2

[
|r1|2 ln

(
EC,1

T

)
sin (2πN1)

+ 25π3

256
|r2|2 T

�2
ln

(
EC,2

�2

)
sin (2πN2)

]
. (44)

The crossover temperature T ∗ separating two regimes is de-
fined as

EC,2

T ∗ ln

(
EC,1

T ∗

)
= 25π5

2048γ cos2 (πN2)

1

|r1|2

× ln

(
π2

8γ |r2|2 cos2 (πN2)

)
. (45)

The NFL behavior dominates if T � T ∗ while the FL regime
is predicted at the opposite limit T 	 T ∗.

3. �2 � T � �1, Fermi liquid on the left
and non-Fermi-liquid on the right CKC

This parametric regime is complementary to the case dis-
cussed in the Sec. IV B 2. The regime is achieved when the
gate voltage applied to the QD 2 tunes it closer to the Coulomb
blockade peak than the QD 1 is. The TP is characterized by
the weak FL on the left and NFL effect on the right CKC as

S = −1024γ

75eπ2

[
|r2|2 ln

(
EC,2

T

)
sin (2πN2)

+ 25π3

256
|r1|2 T

�1
ln

(
EC,1

�1

)
sin (2πN1)

]
. (46)

The crossover temperature T ∗∗ separating FL and NFL
regimes is defined as

EC,1

T ∗∗ ln

(
EC,2

T ∗∗

)
= 25π5

2048γ cos2 (πN1)

1

|r2|2

× ln

(
π2

8γ |r1|2 cos2 (πN1)

)
. (47)

The NFL behavior dominates when T � T ∗∗ while the FL
regime holds at the opposite limit T 	 T ∗∗. If the two CKCs
are identical, T ∗∗ = T ∗.

4. T � (�1, �2 ), Fermi-liquid regime

In the regime of vanishingly small temperatures T �
(�1, �2) the TP of the system behaves in accordance with the
nonperturbative FL scenario:

S = −12πγ T

7e

[ |r1|2
�1

ln

(
EC,1

�1

)
sin (2πN1)

+ |r2|2
�2

ln

(
EC,2

�2

)
sin (2πN2)

]
. (48)

On the one hand, the TP is a linear function of the temperature,
which is the hallmark for the FL regime. On the other hand,
the prefactors are giant when both QDs are fine tuned by the
gate voltages to the regime of the vicinities of the Coulomb
peaks. The system therefore is characterized by FL properties
strongly renormalized by the scattering and interactions.

The advantage of the nonperturbative solution in compari-
son to the perturbative one is that the latter is applicable only
to the temperature regime |r j |2EC, j � T � EC, j while the
former can be used at any small temperature. With the appear-
ance of the two Kondo resonance width energy scales �1, �2

in the nonperturbative treatment, we can identify four different
limit regimes as represented above. They correspond to four
regimes shown in Fig. 3, left panel, as: the first: red; the sec-
ond: blue; the third: yellow; and the fourth: green. The right
panel of Fig. 3 represents the contour plot of thermopower as
a function of (N1, N2). The perturbative result belongs to the
first regime (�1, �2) � T in which the temperature scaling of
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2 2

2

13

4 4

4 4

3

2

FIG. 3. Left panel: Region plot of four segments (the number
marked on each one corresponds to the regime in the main text)
as functions of the dimensionless gate voltages N1 and N2. 1 - red
region: �1, �2 � T , 2 - blue region: �1 � T < �2, 3 - yellow region:
�2 � T < �1, 4 - green region: T < �1, �2. Right panel: Contour
plot of thermopower as function of the dimensionless gate voltages
N1 and N2 computed from general formula. Other parameters: |r1|2 =
0.1, |r2|2 = 0.1, T/EC = 0.05 (EC,1 = EC,2 = EC).

TP behaves in accordance with the NFL scenario. Thanks to
the NFL enhancement of the heat proliferation the TP reaches
the biggest value when (�1, �2) → T at low-temperature
regime (see also in Fig. 4).

Depending on a domain of external parameters the TP of
the 2SCKC behaves in accordance with either NFL or FL
scenario. TP is a subject to one of the four regimes shown in
Fig. 3, left panel, when the temperature is varied. Behavior
of the TP maximum computed from the general formulas
[see Eqs. (37) and (40)] as a function of temperature for
the different sets of reflection amplitudes: |r1|2 = |r2|2 = 0.1
(continuous line) and |r1|2 = 0.1, |r2|2 = 0.08 (dashed line)
is shown on in Fig. 4(a). In Figs. 4(b) and 4(c) we investigate
these cases in detail. Namely, the maximum of TP taken from
general formulas and Eq. (43) (perturbative solution) are plot-
ted by the blue and red lines at the same dimensionless gate
voltages (N10, N20), respectively. Besides, in Figs. 4(b) and
4(c), the maximums of TP eSmax are plotted as functions of
the ratio T/Tper where Tper is defined as Tper = max[|r j |2]EC .
Thus, Tper = 0.1 in both panels. Clearly, the perturbative solu-
tion of the first regime (�1, �2 � T ) is achieved on the right
side of the point at T/Tper = O(1). Figure 5 provides more
details on the validity regime of the perturbative solution.
Namely, the condition Tper � T � EC can be adapted only
when |r j | are small enough [38].

On Figs. 4(b) and 4(c) we show by black lines the tem-
perature behavior of the TP computed at specific values of
dimensionless gate voltages N11 and N21 satisfying conditions
�1(N11) = T and �2(N21) = T . Remarkably, the regimes
where TP gets maximum value, are at (�1, �2) ∼ T . On the
one hand, (�1, �2) > T at very low temperatures (the left
side of the crossing point between the blue and black lines).
On the other hand, (�1, �2) < T at higher temperatures (the
right side of the crossing point). We conclude that to observe
the fingerprints of the NFL behavior in the thermoelectric
transport of the 2SCKCs it is sufficient to perform several sets
of experiments at different temperatures from the highest one
T 	 |r j |2EC, j to the lowest possible (notice that the tempera-
ture is anyway bounded from below by the mean level spacing

FIG. 4. Maximum of thermopower as a function of temperature.
The value eSmax is achieved at (N10, N20). (a) the curves for plots are
computed using general formulas [see Eqs. (35) and (38)] for dif-
ferent sets of reflection amplitudes: |r1|2 = |r2|2 = 0.1 (continuous
line) and |r1|2 = 0.1, |r2|2 = 0.08 (dashed line). (b) and (c) eSmax

as a function of T/Tper (Tper = max[|r j |2]EC = 0.1 in both panels)
are plot for these two parameter sets: blue lines are maximum of
thermopower eSmax taken from general formulas, red lines describe
the thermopower computed from Eq. (43) (perturbative solution) at
(N10, N20), while black lines correspond to the thermopower com-
puted at the gate voltages (N11, N21) at which �1(N11) = T and
�2(N21) = T (EC,1 = EC,2 = EC). The perturbative calculation’s va-
lidity is defined by the condition T/Tper = 1 fulfilled on the right side
of the plots.

of the QD being the smallest energy parameter of the model).
Besides, the condition of the vicinity to the Coulomb peaks
provides an access to crossing three distinct regimes: either
(1 → 2 → 4) or (1 → 3 → 4) where the crossover between
NFL and FL behavior is predicted to be pronounced (here
digits n = 1 → 4 refer to four distinct temperature regimes
discussed in Sec. IV and analyzed in gross detail in subsec-
tions. Necessary details of calculations are presented in the
Appendix.)
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FIG. 5. Maximum of thermopower eSmax as a function of T/Tper .
Blue and red lines are computed from the general formulas and
perturbation approach, respectively. (a) |r1|2 = 0.05, |r2|2 = 0.03,
so Tper/EC = 0.05 and (b) |r1|2 = |r2|2 = 0.03, so Tper/EC = 0.03.
The inserts: Maximum of thermopower as a function of temperature.
The perturbative result approaches the general one when T/Tper 	 1
(EC,1 = EC,2 = EC).

V. DISCUSSION AND CONCLUSION

The investigation of TP for the weak coupling between
two CKCs in both cases: 1CK-2CK and 2CK-2CK shows the
competition between the FL and NFL picture. However, the
windows of parameters to observe the FL property are much
broader than the windows to access the NFL one. The reason
is that the NFL intermediate coupling fixed points of MCK
are hyperbolic and therefore unstable. The results of this work
not only cover the perturbative accessible regimes, which have
been represented in Ref. [35], but also show a rich property of
the TP in different domains of parameters.

Figure of merit ZT . In order to estimate the figure of merit
ZT in the 2SCKCs we rewrite the Eq (10) in the following
form:

ZT = S2

L0 · R(T )
,

K
GT

= L0 · R(T ) = L0 · RL − S2.

(49)

On the one hand, the ZT is proportional to the second power
of the TP. On the other hand, it is inversely proportional to
the Lorenz ratio RL [39]. The conventional WF law predicts
RL = 1 at T = 0 with vanishingly small corrections at low
temperatures. The generalized WF law discussed in Ref. [39]
says that the Lorenz ratio in the 2SCKCs is in general greater
than unity and in particular, bounded from above by the value
Rmax

L = 27/7. Therefore, two competing effects take place:
the NFL scenario significantly enhances the thermoelectric
power at low temperatures compare to the FL value while
Anderson orthogonality catastrophe results in increase of the
Lorenz ratio [39]. Yet another bad news for the figure of merit
are associated with vanishing of TP at the low-temperature
regime and vanishing of TP for the almost transparent QPC
setups (small reflection amplitude is a PH breaking param-
eter, which has to be controllable small for the validity of
the whole theory). As one can see it from Figs. 4 and 5,
the maximum of TP is reached at the crossover temperature
regime (�1, �2) ≈ T at the very vicinity of the Coulomb
peaks Nj ≈ 0.5 ± δNj . Following Matveev-Andreev [24] we
estimate δNj ∼ 1/|r j |

√
T/EC, j . It finally results in the best

ZT estimate

[ZT ]max → a

RL
|r|2 �

EC
ln2

(
EC

�

)
(50)

with a � 1. For this estimation we choose |r1| = |r2| = |r|,
�1 = �2 = � and EC,1 = EC,2 = EC . For realistic 2SCKCs
[ZT ]max ∼ |r|4 ln2(|r|2) � 1.

Extending the proposal of the weak coupling between
two CKCs [35] to the regime of almost transparent QPC
in the central area of the 2SCKC, the very recent experi-
ment [69] and theory [70,71] have investigated the strong
coupling limit. Let us comment on the connection between
the weak and strong coupling regimes of the 2SCKCs. In
Ref. [35] we have considered the 2SCKC weakly connecting
1CK-1CK or 1CK-2CK or 2CK-2CK. The same realization
for the strong coupling of two Kondo simulators has also
been theoretically suggested in Ref. [35] and experimentally
realized recently in Ref. [69] for 1CK-1CK coupling [79].
One of the most exciting theoretical predictions of the two-
impurity single-channel Kondo effect [81–83] is a possibility
to map the model under certain assumptions onto the 2CK
Hamiltonian. Interestingly, the Refs. [69–71] showed that at
the triple degeneracy point of the 2SCKC Z3 symmetry and
corresponding local parafermion emerge. It is straightforward
to extend the idea [35] to MCK-NCK strong coupling (see
Fig. 6). Suppose that there are M > 1 identical QPCs in the
left-hand side of the 2SCKC and N > 1 identical QPCs in
the right side of it. The total degeneracy is M + 1 + N and
corresponding emergent local symmetry is ZM+N+1. There are
three important (M, N ) realizations accessible through exist-
ing experimental setups: (i) (2,1) or (1,2) connecting 1CK and
2CK with emergent symmetry Z4; (ii) (2,2); and (iii) (3,1) or
(1,3) with emergent symmetry Z5. Corresponding weak link
setups are characterized by the symmetries: (i) U (1) × Z2; (ii)
Z2 × Z2; and (iii) U (1) × Z3. As the weak coupling regimes
of (ii) and (iii) are clearly distinct, being characterized by both
different symmetries and different Lorenz ratios (see Ref. [39]
for more details), it is interesting to examine regimes (ii) and
(iii) in the strong coupling limit. In particular it is important to
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V

V
V

V

FIG. 6. Schematic of a strong coupling between two charge
Kondo circuits. Notations are the same as on Fig. 1 with two distinct
differences: (i) different color scheme used for the left (orange, hot)
and right (yellow, cold) parts of the circuit; (ii) the central part of
the system is modified. The tunnel contact in the center of Fig. 1 is
replaced by almost transparent QPC. The chiral edge mode strongly
couples QD1 and QD2. The temperature gradient (shown by contin-
uous change of color from orange to yellow) is applied across the
central QPC.

understand the symmetry of local parafermion emerging in the
strong link setup. In addition, switching between different in-
termediate coupling fixed points results in crossovers between
various fractionalized modes manifesting itself in distinctly
different regimes of the charge and heat transport.

The weak link regime discussed in this paper was analyzed
using a standard approach based on the transport integrals
[35]. The validity of this approach is justified by an assump-
tion that both temperature and voltage drops occur exactly at
the central tunnel barrier. As a result, both the left and the right
parts of the 2SCKC are considered at thermal and mechanical
equilibrium being characterized by certain temperature T and
chemical potential μ. This approach is clearly invalid for the
strong link between two sides of the Kondo simulator where
both the temperature and the voltage changes continuously
across the central QPC. The full-fledged linear response the-
ory of the charge and heat transport across the strong link of
the two-site Kondo simulators can be constructed by using
Luttinger’s pseudogravitational approach [84,85] or thermo-
mechanical potential [86,87] method in combination with
Kubo equations. The theory beyond linear response requires
also using Keldysh formalism [86,87] and represents an inter-
esting and important direction for the future investigation.

In summary, we revisited the thermoelectric transport at
the weak link of the 2SCKC model proposed in the Ref. [35].
The Abelian bosonization approach is used for both 1CK and
2CK setup while the refermionization technique is applied in
order to solve the 2CK model nonperturbatively. We show
the different windows of the parameter set where the temper-
ature dependence of TP behaves either the full FL or NFL
characteristics or the competition between these properties.
The nonperturbative results not only cover the perturbative
results but also be applicable in the lower-temperature regime
T < |r j |2EC, j . We predict that the TP is enhanced in the

2SCKC in comparison with the single CKC setup. Indeed,
complex charge Kondo circuits showing the diversity of the
competition between the FL and NFL properties represent
new classes of the quantum simulators characterized by a
significant improvement of the thermoelectric properties. The
models describing the charge and heat transport through these
devices deserve extensive theoretical and experimental studies
in the future. The realistic figures of merit of the 2SCKCs are,
however, still far from approaching the numbers demanded
by the quantum computer applications. Detailed investigation
of the multisite quantum simulators in the NFL operational
regimes provides a promising avenue for the new quantum
technologies. Finally, we propose to use the experimental
implementation in Ref. [69] for investigating the different
parafermion contributions to the quantum thermoelectricity
when the coupling between QDs is switched from weak to
strong.
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APPENDIX

In this Appendix we represent the details of the different
approaches at different limits in order to obtain the results
shown in the Sec. IV B.

(1) If p1 → 0, p2 → 0, we have:

lim
p1→0

p1(
z + u

2

)2 + p2
1

= πδ

(
z + u

2

)
, (A1)

lim
p2→0

p2(
z − u

2

)2 + p2
2

= πδ

(
z − u

2

)
. (A2)

As a result

lim
p2→0

FT,m(p1 → 0, p2)

p2
= lim

p2→0

∫ ∞

−∞
du

πu3[u2 + 4π2]

2 sinh [u]
[
u2 + p2

2

]
=

∫ ∞

−∞
du

πu[u2 + 4π2]

2 sinh [u]
= 9π5

8
,

(A3)

and, finally

lim
p1→0

FT,s(p1, p2 → 0)

p1
= 9π5

8
. (A4)

We obtain the electric conductance as

G = π4GCT 2

6γ 2EC,1EC,2
, (A5)
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and the thermoelectric coefficient as

GT = − 3π4GCT 2

16eγ EC,1EC,2

[
|r1|2 ln

(
EC,1

T

)
sin (2πN1) + |r2|2 ln

(
EC,2

T

)
sin (2πN2)

]
. (A6)

(2) If p1 → 0, p2 	 1 we have:

FC (p1 → 0, p2) =
∫ ∞

−∞
du

π p2u[u2 + 4π2]

sinh [u]
[
u2 + p2

2

] ,

FC (p1 → 0, p2 	 1) = π

p2

∫ ∞

−∞
du

u[u2 + 4π2]

sinh [u]
= 9π5

4p2
,

(A7)

and

FT,m(p1 → 0, p2 	 1) = π

2p2

∫ ∞

−∞
du

u3[u2 + 4π2]

sinh [u]
= 3π7

4p2
.

(A8)

The calculation of the FT,s is a bit complicated, which concerns the principal value (PV) as follows.

FT,s(p1 → 0, p2 	 1)

p1
= 1

p2
PV

∫ ∞

−∞
dz

∫ ∞

−∞
du

uz[u2 + 4π2](
z + u

2

)
sinh

(
u
2

)[
cosh (z) + cosh

(
u
2

)]
= 8

p2

∫ ∞

−∞
d p

∫ ∞

−∞
dq

{
q[q2 + π2]

sinh (q) cosh (p/2) cosh (p/2 − q)
− tanh (p/2)q2[q2 + π2]

p cosh (p/2 + q) cosh (p/2 − q)

}
= 192π4

25p2
. (A9)

The electric conductance G and the thermoelectric coefficient GT is computed at the first nonzero term in the nonperturbative
treatment are

G = 3GCπ5T 3

32γ 2�2EC,1EC,2
, (A10)

GT = − 32GCπ3T 3

25eγ EC,1EC,2�2

[
|r1|2 ln

(
EC,1

T

)
sin (2πN1) + 25π3

256
|r2|2 T

�2
ln

(
EC,2

�2

)
sin (2πN2)

]
. (A11)

(3) p1 	 1, p2 → 0: This limit is opposite to the second limit. The calculation process is the same as the above one.

FC (p1 	 1, p2 → 0) = π

p1

∫ ∞

−∞
du

u[u2 + 4π2]

sinh [u]
= 9π5

4p1
, (A12)

FT,m(p1 	 1, p2 → 0)

p2
= 1

p1
PV

∫ ∞

−∞
dz

∫ ∞

−∞
du

uz[u2 + 4π2](
z − u

2

)
sinh

(
u
2

)[
cosh (z) + cosh

(
u
2

)]
= 192π4

25p1
, (A13)

FT,s(p1 	 1, p2 → 0) = 3π7

4p1
. (A14)

The electric conductance is

G = 3GCπ5T 3

32γ 2EC,1EC,2�1
, (A15)

and the thermoelectric coefficient is

GT = − 32GCπ3T 3

25eγ EC,1EC,2�1

[
|r2|2 ln

(
EC,2

T

)
sin (2πN2) + 25π3

256
|r1|2 T

�1
ln

(
EC,1

�1

)
sin (2πN1)

]
. (A16)
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(4) If p1 	 1, p2 	 1, we simply remove the terms, which are summed with p2
1 and p2

2 in the denominator of the formula
(39). We then obtain:

FC (p1 	 1, p2 	 1) = 1

p1 p2

∫ ∞

−∞
dz

∫ ∞

−∞
du

u[u2 + 4π2]

sinh
[

u
2

][
cosh (z) + cosh

(
u
2

)] = 64π4

5p1 p2
. (A17)

FT,m(p1 	 1, p2 	 1) = 1

p1 p2

∫ ∞

−∞
dz

∫ ∞

−∞
du

(
z − u

2

)
uz[u2 + 4π2]

sinh
[

u
2

][
cosh (z) + cosh

(
u
2

)] = 192π6

35p1 p2
. (A18)

FT,s(p1 	 1, p2 	 1) = 1

p1 p2

∫ ∞

−∞
dz

∫ ∞

−∞
du

(
z + u

2

)
uz[u2 + 4π2]

sinh
[

u
2

][
cosh (z) + cosh

(
u
2

)] = 192π6

35p1 p2
. (A19)

The electric conductance and the thermoelectric coefficient in this limit are

G = 8GCπ4T 4

15γ 2EC,1EC,2�1�2
, (A20)

GT = − 32GCπ5T 5

35eγ EC,1EC,2�1�2

{ |r1|2
�1

ln

(
EC,1

T + �1

)
sin (2πN1) + |r2|2

�2
ln

(
EC,2

T + �2

)
sin (2πN2)

}
. (A21)
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